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Linear homogeneous ODEs
Consider a linear, homogeneous ODE of order m ∈ N

Am(t)y (m)(t) + ⋅ ⋅ ⋅ +A2(t)y ′′(t) +A1(t)y ′(t) +A0(t)y(t) = 0, (1)

with coefficients Ak ∈ C(I ).

There are exactly m linearly independent solutions of (1).

If y1, y2, . . . , ym are m linearly independent solutions of (1), then they
build a basis of the space of solutions of (1) and M ..= {y1, . . . , ym}
defines a fundamental system of the ODE (1).

The general solution of the homogeneous ODE (1) is given by

yh(t) ..= C1y1(t) + C2y2(t) + ⋅ ⋅ ⋅ + Cmym(t), with Ck ∈ R.

Question: how to find yk?

Differential Equations I Auditorium Exercise Sheet 5 04.12.2023 3 / 14



Resolution of linear homogeneous ODEs with
constant coefficients
In case the coefficients in (1) are constants, we get:

amy
(m)(t) + am−1y (m−1)(t) + ⋅ ⋅ ⋅ + a2y

′′(t) + a1y
′(t) + a0y(t) = 0, (2)

for ak ∈ R.

Define the characteristic polynomial of (2) as

P(λ) ∶= amλm + am−1λm−1 + ⋅ ⋅ ⋅ + a2λ
2 + a1λ + a0

If λ is a root (zero) of P , then the function eλt solves (2).
In general, if λ is a root of P with (algebraic) multiplicity d ∈ N, then

eλt , t ⋅ eλt , . . . , td−1 ⋅ eλt

are d linearly independent solutions of (2).
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Example 1

Write a fundamental system and the general solution of the ODE

y (4) (t) − 5y ′′′ (t) + 6y ′′ (t) + 4y ′ (t) − 8y (t) = 0.
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Example 1

Write a fundamental system and the general solution of the ODE

y (4) (t) − 5y ′′′ (t) + 6y ′′ (t) + 4y ′ (t) − 8y (t) = 0.

Characteristic polynomial: P(λ) = λ4 − 5λ3 + 6λ2 + 4λ− 8 = (λ+ 1)(λ− 2)3.

Roots of P are:
λ1 = −1, with multiplicity d1 = 1 Ô⇒ e−t is a solution;
λ2 = 2, with multiplicity d2 = 3 Ô⇒ e2t , te2t , t2e2t are the other lin.
indep. solutions.

Hence, a fundamental system is given by M = {e−t , e2t , te2t , t2e2t}
and the general solution is

yh(t) = C1e
−t + C2e

2t + C3te
2t + C4t

2e2t , Ck ∈ R.
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Complex and real fundamental systems
Recall: any polynomial of degree m ∈ N with real (or complex)
coefficients has exactly m roots in C (counted with their multiplicity).

If λ ∈ C ∖R is a root of the characteristic polynomial P associated to
(2) with real coefficients, then its complex conjugate λ is still root of
P , since

P(λ) =
m

∑
k=0

akλ
k =

m

∑
k=0

akλk =
λ root

0 = 0.

Meaning: complex solutions always appear in pairs of conjugates!

Example 2 The ODE y ′′ − 2y ′ + 5y = 0
has characteristic polynomial P (λ) = λ2 − 2λ + 5.
Solve: P(λ) = 0 ⇐⇒ λ2 − 2λ + 5 = 0 ⇐⇒ λ = 1 ± 2i .

Then a (complex) fundamental system is given by {e(1+2i)t , e(1−2i)t}
and the general solution is:
yh(t) = C1e

(1+2i)t + C2e
(1−2i)t = C1e

te2it + C2e
te−2it .
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Complex and real fundamental systems
Euler formula: for θ ∈ R, it is

e±iθ = cos(θ) ± i sin(θ).

If λ = a + ib ∈ C (a,b ∈ R, b ≠ 0), eλt = e(a+ib)t = eat cos(bt) + ieat sin(bt).
Let λ = a − ib be its complex conjugate.

R(eλt) = eat cos(bt) = eλt + eλt
2

↝ real part of eλt

I(eλt) = eat sin(bt) = eλt − eλt
2i

↝ imaginary part of eλt

If λ is root of the characteristic polynomial P of (2) (and thus also λ)
Ô⇒ eλt , eλt are (complex, lin. indep.) solutions of (2)
Ô⇒ R(eλt),I(eλt) are (real, lin. indep.) solutions of (2).
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Example 3

Determine a real fundamental system for y ′′(t) − 2y ′(t) + 5y(t) = 0.
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Example 3

Determine a real fundamental system for y ′′(t) − 2y ′(t) + 5y(t) = 0.

From Example 2 we know that e(1+2i)t and e(1−2i)t are 2 lin. indep.
complex solutions.

Then R(e(1+2i)t) = et cos(2t) and I(e(1+2i)t) = et sin(2t) are lin. indep.
real solutions.

A real fundamental system is then given by {et cos(2t), et sin(2t)} and the
corresponding general solution is

yh(t) = C1e
t cos(2t) + C2e

t sin(2t).
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Linear inhomogeneous ODEs

Consider a linear, inhomogeneous ODE of order m ∈ N

Am(t)y (m)(t) + ⋅ ⋅ ⋅ +A2(t)y ′′(t) +A1(t)y ′(t) +A0(t)y(t) = b(t), (3)

with coefficients Ak ,b ∈ C(I ).

If yh is the general solution of the corresponding homogeneous
equation and yp is a particular solution of (3), then the general
solution of (3) is given by

y(t) ∶= yh(t) + yp(t)

Question: how to determine yp?
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Resolution of linear inhomogeneous ODEs with
constant coefficients by an ansatz

In case the coefficients in (3) are constant, we get:

amy
(m)(t) + am−1y (m−1)(t) + ⋅ ⋅ ⋅ + a2y

′′(t) + a1y
′(t) + a0y(t) = b(t), (4)

for ak ∈ R. If b(t) is of "special" form, we can take an ansatz for yp.

If b(t) = (b0+b1t +⋅ ⋅ ⋅+bqtq)eλt , we take the exponential ansatz yp with:

▸ If λ IS NOT a root of P, let yp(t) ..= (B0 +B1t + ⋅ ⋅ ⋅ +Bqt
q)eλt ;

▸ If λ IS a root of P, let yp(t) ..= td(B0 +B1t + ⋅ ⋅ ⋅ +Bqt
q)eλt with d

multiplicity of λ.

If b(t) = b0 + b1t + ⋅ ⋅ ⋅ + bqtq = (b0 + b1t + ⋅ ⋅ ⋅ + bqtq)e0t polynomial, follow
the previous case with λ = 0.
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Resolution of linear inhomogeneous ODEs with
constant coefficients by an ansatz

In case the coefficients in (3) are constant, we get:

amy
(m)(t) + am−1y (m−1)(t) + ⋅ ⋅ ⋅ + a2y

′′(t) + a1y
′(t) + a0y(t) = b(t), (4)

for ak ∈ R. If b(t) is of "special" form, we can take an ansatz for yp.

If b(t) = (b0 + b1t + ⋅ ⋅ ⋅ + bqtq) cos(bt) + (c0 + c1t + ⋅ ⋅ ⋅ + cqtq) sin(bt), we
take the trigonometric ansatz yp with:

▸ If ib IS NOT a root of P, let
yp(t) ..= (B0 +B1t + ⋅ ⋅ ⋅ +Bqt

q) sin(bt) + (C0 + C1t + ⋅ ⋅ ⋅ + Cqt
q) cos(bt);

▸ If ib IS a root of P, let
yp(t) ..= td(B0 +B1t + ⋅ ⋅ ⋅ +Bqt

q) sin(bt) + td(C0 + C1t + ⋅ ⋅ ⋅ + Cqt
q) cos(bt)

with d multiplicity of λ.
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Example 4
Determine the general solution of

y ′′(t) − 2y ′(t) + 5y(t) = 13e−2t . (5)

The general solution of (5) is given by y(t) = yh(t) + yp(t), for yh general
solution of the corresponding homogeneous ODE

y ′′(t) − 2y ′(t) + 5y(t) = 0. (6)

In Example 3 we already computed yh(t) = C1e
t cos(2t) + C2e

t sin(2t).

The inhomogeneity term is b(t) ..= 13e−2t , with λ = −2 NO root of P Ô⇒
take the exponential ansatz yp(t) ..= Ce−2t . Substitute into (5) to find C :

(4C + (−2)(−2)C + 5C)e−2t = 13e−2t Ô⇒ C = 1 Ô⇒ yp(t) = e−2t .
The general solution of (5) is:

y(t) = yh(t) + yp(t) = C1e
t cos(2t) + C2e

t sin(2t) + e−2t .
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Remark: linear combination of particular solutions

Suppose yp,1 is a solution of the linear, inhomogeneous ODE

m

∑
k=0

Ak(t)y (k)(t) = b1(t)

and yp,2 solves
m

∑
k=0

Ak(t)y (k)(t) = b2(t).

Then each linear combination y(t) ∶= αyp,1 + βyp,2 (α,β ∈ R) solves

m

∑
k=0

Ak(t)y (k)(t) = αb1(t) + βb2(t).
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Exercise 1

Determine a real fundamental system and the general solution of the
following linear homogeneous ODE:

y (5) − 4y (4) + 9y
′′′ − 18y ′′ + 20y ′ − 8y = 0.
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Exercise 2

Determine the general solution of the differential equation

y ′′′(t) + y ′′(t) − 2y(t) = bk(t)

in each of the following cases:
(i) b1(t) = e−t ;
(ii) b2(t) = 2tet ;
(iii) b3(t) = t2 + 3;
(iv) b4(t) = 25 cos(2t);
(v) b5(t) = −2t2 + 4e−t − 6. Hint: Notice that b5(t) = 4b1(t) − 2b3(t).
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