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Linear homogeneous ODEs

Consider a linear, homogeneous ODE of order m e N
Am(£)yU™(£) +---+ Aa(£)y" (£) + Ar()y'(£) + Ao(t)y(t) =0, (1)
with coefficients Ax € C(/).
@ There are exactly m linearly independent solutions of (1).

o If y1,¥2,...,ym are m linearly independent solutions of (1), then they
build a basis of the space of solutions of (1) and M :={y1,...,¥Ym}
defines a fundamental system of the ODE (1).

@ The general solution of the homogeneous ODE (1) is given by
yh(t) = Ciy1(t) + Gya(t) + -+ Cmym(t), with Cy € R.

@ Question: how to find y;?
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Resolution of linear homogeneous ODEs with
constant coefficients
In case the coefficients in (1) are constants, we get:

amy ™ (8) + am 1y "I (E) + -+ a2y (1) + ary'(t) + a0y(t) =0, (2)

for a; € R.

o Define the characteristic polynomial of (2) as
P()\) = am)\m + am_l)\m_l +oee 4+ 32>\2 + al)\ + ap

o If \is a root (zero) of P, then the function e* solves (2).

@ In general, if A is a root of P with (algebraic) multiplicity d € N, then

At d-1_ _\t

Mot 9 e

are d linearly independent solutions of (2).
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Example 1

Write a fundamental system and the general solution of the ODE
y® (£) =5y (£) +6y" () + 4y’ (£) -8y (£) = 0.
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Example 1

Write a fundamental system and the general solution of the ODE
y® (£) - 5y" (¢) + 6y (t) + 4y’ (t) -8y (t) = 0.

Characteristic polynomial: P(A) = A* =5X3 +6X% +4X -8 = (A +1)(\-2)3.

Roots of P are:

@ A\ = -1, with multiplicity d; =1 == e ! is a solution;

o o =2, with multiplicity dr =3 == €2t te®t, t?e?! are the other lin.
indep. solutions.

Hence, a fundamental system is given by M = {e™*, €%, te?!, t?e*'}
and the general solution is

yr(t) = Cle ™t + Ge®t + Gate®t + Gut?e?, C.eR.
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Complex and real fundamental systems

@ Recall: any polynomial of degree m € N with real (or complex)
coefficients has exactly m roots in C (counted with their multiplicity).

o If A\e C\R is a root of the characteristic polynomial P associated to
(2) with real coefficients, then its complex conjugate A is still root of
P, since

— mo _
PA) =) ad =) agdk = 0=0.
( ) I(Z:EJ k /Z;) k A root

Meaning: complex solutions always appear in pairs of conjugates!
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Complex and real fundamental systems

@ Recall: any polynomial of degree m € N with real (or complex)
coefficients has exactly m roots in C (counted with their multiplicity).

o If A\e C\R is a root of the characteristic polynomial P associated to
(2) with real coefficients, then its complex conjugate A is still root of
P, since

A root

_ m —k m _
P(A):Zak/\ :Zak)\k = 0=0.
k=0 k=0
Meaning: complex solutions always appear in pairs of conjugates!

e Example 2 The ODE y”" -2y’ +5y =0
has characteristic polynomial P () = A2 — 2\ + 5.
Solve: P(A) =0 <= A2-2\+5=0 < A=1x2/.

Then a (complex) fundamental system is given by {e(1+2i)t’ e(l_z;)t}
and the general solution is:
yp(t) = Cre(+20t 4 (1720t = € ete?it 4 Crete 2t
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Complex and real fundamental systems

Euler formula: for § e R, it is
e = cos(0) + isin(0).

IfA=a+ibeC (a,beR, b+0), eM = (3Bt — @3t co5(pt) + je?t sin(bt).
Let A\ = a— ib be its complex conjugate.

Aty _ _at _ e+ M At
R(e™) = e cos(bt) = — real part of e

At _ At
J(eM) = et sin(bt) = S

T imaginary part of et
1

o If Xis root of the characteristic polynomial P of (2) (and thus also )
= e e are (complex, lin. indep.) solutions of (2)

— R(e),T(e*t) are (real, lin. indep.) solutions of (2).
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Example 3

Determine a real fundamental system for y”(t) - 2y'(t) + 5y(t) = 0.
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Example 3

Determine a real fundamental system for y”(t) - 2y'(t) + 5y(t) = 0.

From Example 2 we know that e(*2)t and (120t are 2 [in. indep.

complex solutions.

Then 9R(e(1+20t) = et cos(2t) and J(e(1*2)t) = etsin(2t) are lin. indep.
real solutions.

A real fundamental system is then given by {e’ cos(2t),e’sin(2t)} and the
corresponding general solution is

yu(t) = Cref cos(2t) + Coe’sin(2t).
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Linear inhomogeneous ODEs

Consider a linear, inhomogeneous ODE of order me N

Am()y ™ (£) 4+ Aa()y" () + AL(t)y(t) + Ao(t)y (t) = b(t), (3)

with coefficients Ay, be C(/).

o If yp is the general solution of the corresponding homogeneous
equation and y, is a particular solution of (3), then the general
solution of (3) is given by

y(t) = ya(t) + yp(t)

© Question: how to determine y,?
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Resolution of linear inhomogeneous ODEs with
constant coefficients by an ansatz

In case the coefficients in (3) are constant, we get:
amy ™ (t) + am 1y "D (£) + -+ a0y (t) + a1y’ () + a0y (t) = b(t), (4)

for ax e R. If b(t) is of "special" form, we can take an ansatz for y,.

o If b(t) = (bo+ byt +---+byt?)e*, we take the exponential ansatz y, with:

> If XIS NOT a root of P, let y,(t) := (By + Byt + -+ + Byt9)ert;

> If A1S a root of P, let y,(t) := t9(Bg + Byt + -+ + Byt7)e* with d
multiplicity of .

o If b(t) =bg+bit+:-+bygt? = (bg+bit+--+ byt?)e’ polynomial, follow
the previous case with A = 0.
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Resolution of linear inhomogeneous ODEs with
constant coefficients by an ansatz

In case the coefficients in (3) are constant, we get:
amy ™ () + am1y TV (£) + -+ 2y (8) + ary' (1) + a0y (t) = b(t), (4)
for ax e R. If b(t) is of "special" form, we can take an ansatz for y,.
o If b(t) = (bo+bit+---+ bgt?)cos(bt) + (co+ cit +--- + cqt9)sin(bt), we
take the trigonometric ansatz y, with:

» If ib IS NOT a root of P, let
Yp(t) :=(Bo+ Bit +---+ Bgt9)sin(bt) + (Co + Gyt +--- + C4t?) cos(bt);

» If ib IS a root of P, let

yp(t) := t9(Bg + Byt + -+ + BytI) sin(bt) + t¢(Co + Cyt + -+ + Cyt7) cos(bt)
with d multiplicity of A.
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Example 4

Determine the general solution of

y"(t) =2y'(t) +5y(t) = 13”2, (5)
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Example 4

Determine the general solution of

y"(t) = 2y'(t) +5y(t) = 13e*". (5)

The general solution of (5) is given by y(t) = yu(t) + yp(t), for y, general
solution of the corresponding homogeneous ODE

y"(t) =2y'(t) + 5y(t) = 0. (6)
In Example 3 we already computed y,(t) = Cief cos(2t) + Cretsin(2t).
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Example 4

Determine the general solution of

y"(t) = 2y'(t) +5y(t) = 13e*". (5)

The general solution of (5) is given by y(t) = yu(t) + yp(t), for y, general
solution of the corresponding homogeneous ODE

y"(t) =2y'(t) + 5y(t) = 0. (6)
In Example 3 we already computed y,(t) = Cief cos(2t) + Cretsin(2t).

The inhomogeneity term is b(t) := 13e~2f, with A = =2 NO root of P —
take the exponential ansatz y,(t) := Ce 2. Substitute into (5) to find C:

(4C+(-2)(-2)C+5C)e* =13e? = C=1 = y,(t) ="
The general solution of (5) is:

y(t) = yu(t) + yp(t) = Cret cos(2t) + Caelsin(2t) + e 2.
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Remark: linear combination of particular solutions

Suppose yp 1 is a solution of the linear, inhomogeneous ODE

S Aty (t) = by (1)
k=0

and y, > solves
> Ac(t)y S (1) = ba(t).
k=0

Then each linear combination y(t) := ayp 1 + Byp2 (e, 5 € R) solves

S Au(8)y® () = aby(t) + Bba(1).
k=0
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Exercise 1

Determine a real fundamental system and the general solution of the
following linear homogeneous ODE:

y(5) - 4y(4) + 9ym - 18y" +20y’ -8y = 0.
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Exercise 2

Determine the general solution of the differential equation

y"(t) +y"(t) - 2y(t) = bi(t)
in each of the following cases:
(i) bi(t) =e™";
(il) ba(t) =2tet;
(i) b3(t) =t>+3;
(iv) ba(t) =25cos(2t);
(v) bs(t) = —2t2 +4e7t — 6. Hint: Notice that bs(t) = 4b1(t) - 2b3(t).
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