Auditorium Exercise Sheet 5
 Differential Equations I for Students of Engineering Sciences

Eleonora Ficola

Department of Mathematics of Hamburg University Winter Semester 2023/2024
04.12.2023

Table of contents

(1) Linear homogeneous ODEs

- Resolution of linear homogeneous ODEs with constant coefficients
- Complex and real fundamental systems
(2) Linear inhomogeneous ODEs
- Resolution of linear inhomogeneous ODEs with constant coefficients by an ansatz
- Remark: linear combination of particular solutions of linear inhomogeneous ODEs
(3) Exercises

Linear homogeneous ODEs

Consider a linear, homogeneous ODE of order $m \in \mathbb{N}$

$$
\begin{equation*}
A_{m}(t) y^{(m)}(t)+\cdots+A_{2}(t) y^{\prime \prime}(t)+A_{1}(t) y^{\prime}(t)+A_{0}(t) y(t)=0 \tag{1}
\end{equation*}
$$

with coefficients $A_{k} \in \mathrm{C}(I)$.

- There are exactly m linearly independent solutions of (1).
- If $y_{1}, y_{2}, \ldots, y_{m}$ are m linearly independent solutions of (1), then they build a basis of the space of solutions of (1) and $M:=\left\{y_{1}, \ldots, y_{m}\right\}$ defines a fundamental system of the ODE (1).
- The general solution of the homogeneous ODE (1) is given by

$$
y_{h}(t):=C_{1} y_{1}(t)+C_{2} y_{2}(t)+\cdots+C_{m} y_{m}(t), \quad \text { with } C_{k} \in \mathbb{R}
$$

- Question: how to find y_{k} ?

Resolution of linear homogeneous ODEs with constant coefficients

In case the coefficients in (1) are constants, we get:

$$
\begin{equation*}
a_{m} y^{(m)}(t)+a_{m-1} y^{(m-1)}(t)+\cdots+a_{2} y^{\prime \prime}(t)+a_{1} y^{\prime}(t)+a_{0} y(t)=0 \tag{2}
\end{equation*}
$$

for $a_{k} \in \mathbb{R}$.

- Define the characteristic polynomial of (2) as

$$
P(\lambda):=a_{m} \lambda^{m}+a_{m-1} \lambda^{m-1}+\cdots+a_{2} \lambda^{2}+a_{1} \lambda+a_{0}
$$

- If λ is a root (zero) of P, then the function $e^{\lambda t}$ solves (2).
- In general, if λ is a root of P with (algebraic) multiplicity $d \in \mathbb{N}$, then

$$
e^{\lambda t}, t \cdot e^{\lambda t}, \ldots, t^{d-1} \cdot e^{\lambda t}
$$

are d linearly independent solutions of (2).

Example 1

Write a fundamental system and the general solution of the ODE

$$
y^{(4)}(t)-5 y^{\prime \prime \prime}(t)+6 y^{\prime \prime}(t)+4 y^{\prime}(t)-8 y(t)=0
$$

Example 1

Write a fundamental system and the general solution of the ODE

$$
y^{(4)}(t)-5 y^{\prime \prime \prime}(t)+6 y^{\prime \prime}(t)+4 y^{\prime}(t)-8 y(t)=0
$$

Characteristic polynomial: $P(\lambda)=\lambda^{4}-5 \lambda^{3}+6 \lambda^{2}+4 \lambda-8=(\lambda+1)(\lambda-2)^{3}$. Roots of P are:

- $\lambda_{1}=-1$, with multiplicity $d_{1}=1 \Longrightarrow e^{-t}$ is a solution;
- $\lambda_{2}=2$, with multiplicity $d_{2}=3 \Longrightarrow e^{2 t}, t e^{2 t}, t^{2} e^{2 t}$ are the other lin. indep. solutions.

Hence, a fundamental system is given by $M=\left\{e^{-t}, e^{2 t}, t e^{2 t}, t^{2} e^{2 t}\right\}$ and the general solution is

$$
y_{h}(t)=C_{1} e^{-t}+C_{2} e^{2 t}+C_{3} t e^{2 t}+C_{4} t^{2} e^{2 t}, \quad C_{k} \in \mathbb{R}
$$

Complex and real fundamental systems

- Recall: any polynomial of degree $m \in \mathbb{N}$ with real (or complex) coefficients has exactly m roots in \mathbb{C} (counted with their multiplicity).
- If $\lambda \in \mathbb{C} \backslash \mathbb{R}$ is a root of the characteristic polynomial P associated to (2) with real coefficients, then its complex conjugate $\bar{\lambda}$ is still root of P, since

$$
P(\bar{\lambda})=\sum_{k=0}^{m} a_{k} \bar{\lambda}^{k}=\overline{\sum_{k=0}^{m} a_{k} \lambda^{k}} \underset{\lambda \text { root }}{=} \overline{0}=0 .
$$

Meaning: complex solutions always appear in pairs of conjugates!

Complex and real fundamental systems

- Recall: any polynomial of degree $m \in \mathbb{N}$ with real (or complex) coefficients has exactly m roots in \mathbb{C} (counted with their multiplicity).
- If $\lambda \in \mathbb{C} \backslash \mathbb{R}$ is a root of the characteristic polynomial P associated to (2) with real coefficients, then its complex conjugate $\bar{\lambda}$ is still root of P, since

$$
P(\bar{\lambda})=\sum_{k=0}^{m} a_{k} \bar{\lambda}^{k}=\overline{\sum_{k=0}^{m} a_{k} \lambda^{k}} \underset{\lambda \text { root }}{=} \overline{0}=0 .
$$

Meaning: complex solutions always appear in pairs of conjugates!

- Example 2 The ODE $y^{\prime \prime}-2 y^{\prime}+5 y=0$
has characteristic polynomial $P(\lambda)=\lambda^{2}-2 \lambda+5$.
Solve: $P(\lambda)=0 \Longleftrightarrow \lambda^{2}-2 \lambda+5=0 \Longleftrightarrow \lambda=1 \pm 2 i$.
Then a (complex) fundamental system is given by $\left\{e^{(1+2 i) t}, e^{(1-2 i) t}\right\}$ and the general solution is:

$$
y_{h}(t)=C_{1} e^{(1+2 i) t}+C_{2} e^{(1-2 i) t}=C_{1} e^{t} e^{2 i t}+C_{2} e^{t} e^{-2 i t} .
$$

Complex and real fundamental systems

Euler formula: for $\theta \in \mathbb{R}$, it is

$$
e^{ \pm i \theta}=\cos (\theta) \pm i \sin (\theta)
$$

If $\lambda=a+i b \in \mathbb{C}(a, b \in \mathbb{R}, b \neq 0), e^{\lambda t}=e^{(a+i b) t}=e^{a t} \cos (b t)+i e^{a t} \sin (b t)$.
Let $\bar{\lambda}=a-i b$ be its complex conjugate.

$$
\begin{gathered}
\mathfrak{R}\left(e^{\lambda t}\right)=e^{a t} \cos (b t)=\frac{e^{\lambda t}+e^{\bar{\lambda} t}}{2} \leadsto \text { real part of } e^{\lambda t} \\
\Im\left(e^{\lambda t}\right)=e^{a t} \sin (b t)=\frac{e^{\lambda t}-e^{\bar{\lambda} t}}{2 i} \leadsto \text { imaginary part of } e^{\lambda t}
\end{gathered}
$$

- If λ is root of the characteristic polynomial P of (2) (and thus also $\bar{\lambda}$)
$\Longrightarrow e^{\lambda t}, e^{\bar{\lambda} t}$ are (complex, lin. indep.) solutions of (2) $\Longrightarrow \mathfrak{R}\left(e^{\lambda t}\right), \Im\left(e^{\lambda t}\right)$ are (real, lin. indep.) solutions of (2).

Example 3

Determine a real fundamental system for $y^{\prime \prime}(t)-2 y^{\prime}(t)+5 y(t)=0$.

Example 3

Determine a real fundamental system for $y^{\prime \prime}(t)-2 y^{\prime}(t)+5 y(t)=0$.

From Example 2 we know that $e^{(1+2 i) t}$ and $e^{(1-2 i) t}$ are 2 lin. indep. complex solutions.

Then $\mathfrak{R}\left(e^{(1+2 i) t}\right)=e^{t} \cos (2 t)$ and $\Im\left(e^{(1+2 i) t}\right)=e^{t} \sin (2 t)$ are lin. indep. real solutions.

A real fundamental system is then given by $\left\{e^{t} \cos (2 t), e^{t} \sin (2 t)\right\}$ and the corresponding general solution is

$$
y_{h}(t)=C_{1} e^{t} \cos (2 t)+C_{2} e^{t} \sin (2 t)
$$

Linear inhomogeneous ODEs

Consider a linear, inhomogeneous ODE of order $m \in \mathbb{N}$

$$
\begin{equation*}
A_{m}(t) y^{(m)}(t)+\cdots+A_{2}(t) y^{\prime \prime}(t)+A_{1}(t) y^{\prime}(t)+A_{0}(t) y(t)=b(t) \tag{3}
\end{equation*}
$$

with coefficients $A_{k}, b \in \mathrm{C}(I)$.

- If y_{h} is the general solution of the corresponding homogeneous equation and y_{p} is a particular solution of (3), then the general solution of (3) is given by

$$
y(t):=y_{h}(t)+y_{p}(t)
$$

- Question: how to determine y_{p} ?

Resolution of linear inhomogeneous ODEs with constant coefficients by an ansatz

In case the coefficients in (3) are constant, we get:

$$
\begin{equation*}
a_{m} y^{(m)}(t)+a_{m-1} y^{(m-1)}(t)+\cdots+a_{2} y^{\prime \prime}(t)+a_{1} y^{\prime}(t)+a_{0} y(t)=b(t) \tag{4}
\end{equation*}
$$

for $a_{k} \in \mathbb{R}$. If $b(t)$ is of "special" form, we can take an ansatz for y_{p}.

- If $b(t)=\left(b_{0}+b_{1} t+\cdots+b_{q} t^{q}\right) e^{\lambda t}$, we take the exponential ansatz y_{p} with:
- If λ IS NOT a root of P, let $y_{p}(t):=\left(B_{0}+B_{1} t+\cdots+B_{q} t^{q}\right) e^{\lambda t}$;
- If λ IS a root of P, let $y_{p}(t):=t^{d}\left(B_{0}+B_{1} t+\cdots+B_{q} t^{q}\right) e^{\lambda t}$ with d multiplicity of λ.
- If $b(t)=b_{0}+b_{1} t+\cdots+b_{q} t^{q}=\left(b_{0}+b_{1} t+\cdots+b_{q} t^{q}\right) e^{0 t}$ polynomial, follow the previous case with $\lambda=0$.

Resolution of linear inhomogeneous ODEs with constant coefficients by an ansatz

In case the coefficients in (3) are constant, we get:

$$
\begin{equation*}
a_{m} y^{(m)}(t)+a_{m-1} y^{(m-1)}(t)+\cdots+a_{2} y^{\prime \prime}(t)+a_{1} y^{\prime}(t)+a_{0} y(t)=b(t) \tag{4}
\end{equation*}
$$

for $a_{k} \in \mathbb{R}$. If $b(t)$ is of "special" form, we can take an ansatz for y_{p}.

- If $b(t)=\left(b_{0}+b_{1} t+\cdots+b_{q} t^{q}\right) \cos (b t)+\left(c_{0}+c_{1} t+\cdots+c_{q} t^{q}\right) \sin (b t)$, we take the trigonometric ansatz y_{p} with:
- If ib IS NOT a root of P, let

$$
y_{p}(t):=\left(B_{0}+B_{1} t+\cdots+B_{q} t^{q}\right) \sin (b t)+\left(C_{0}+C_{1} t+\cdots+C_{q} t^{q}\right) \cos (b t) ;
$$

- If ib IS a root of P, let
$y_{p}(t):=t^{d}\left(B_{0}+B_{1} t+\cdots+B_{q} t^{q}\right) \sin (b t)+t^{d}\left(C_{0}+C_{1} t+\cdots+C_{q} t^{q}\right) \cos (b t)$ with d multiplicity of λ.

Example 4

Determine the general solution of

$$
\begin{equation*}
y^{\prime \prime}(t)-2 y^{\prime}(t)+5 y(t)=13 e^{-2 t} . \tag{5}
\end{equation*}
$$

Example 4

Determine the general solution of

$$
\begin{equation*}
y^{\prime \prime}(t)-2 y^{\prime}(t)+5 y(t)=13 e^{-2 t} \tag{5}
\end{equation*}
$$

The general solution of (5) is given by $y(t)=y_{h}(t)+y_{p}(t)$, for y_{h} general solution of the corresponding homogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}(t)-2 y^{\prime}(t)+5 y(t)=0 \tag{6}
\end{equation*}
$$

In Example 3 we already computed $y_{h}(t)=C_{1} e^{t} \cos (2 t)+C_{2} e^{t} \sin (2 t)$.

Example 4

Determine the general solution of

$$
\begin{equation*}
y^{\prime \prime}(t)-2 y^{\prime}(t)+5 y(t)=13 e^{-2 t} . \tag{5}
\end{equation*}
$$

The general solution of (5) is given by $y(t)=y_{h}(t)+y_{p}(t)$, for y_{h} general solution of the corresponding homogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}(t)-2 y^{\prime}(t)+5 y(t)=0 \tag{6}
\end{equation*}
$$

In Example 3 we already computed $y_{h}(t)=C_{1} e^{t} \cos (2 t)+C_{2} e^{t} \sin (2 t)$.
The inhomogeneity term is $b(t):=13 e^{-2 t}$, with $\lambda=-2$ NO root of $P \Longrightarrow$ take the exponential ansatz $y_{p}(t):=C e^{-2 t}$. Substitute into (5) to find C :

$$
(4 C+(-2)(-2) C+5 C) e^{-2 t}=13 e^{-2 t} \Longrightarrow C=1 \Longrightarrow y_{p}(t)=e^{-2 t} .
$$

The general solution of (5) is:

$$
y(t)=y_{h}(t)+y_{p}(t)=C_{1} e^{t} \cos (2 t)+C_{2} e^{t} \sin (2 t)+e^{-2 t} .
$$

Remark: linear combination of particular solutions

Suppose $y_{p, 1}$ is a solution of the linear, inhomogeneous ODE

$$
\sum_{k=0}^{m} A_{k}(t) y^{(k)}(t)=b_{1}(t)
$$

and $y_{p, 2}$ solves

$$
\sum_{k=0}^{m} A_{k}(t) y^{(k)}(t)=b_{2}(t)
$$

Then each linear combination $y(t):=\alpha y_{p, 1}+\beta y_{p, 2}(\alpha, \beta \in \mathbb{R})$ solves

$$
\sum_{k=0}^{m} A_{k}(t) y^{(k)}(t)=\alpha b_{1}(t)+\beta b_{2}(t)
$$

Exercise 1

Determine a real fundamental system and the general solution of the following linear homogeneous ODE:

$$
y^{(5)}-4 y^{(4)}+9 y^{\prime \prime \prime}-18 y^{\prime \prime}+20 y^{\prime}-8 y=0
$$

Exercise 2

Determine the general solution of the differential equation

$$
y^{\prime \prime \prime}(t)+y^{\prime \prime}(t)-2 y(t)=b_{k}(t)
$$

in each of the following cases:
(i) $b_{1}(t)=e^{-t}$;
(ii) $b_{2}(t)=2 t e^{t}$;
(iii) $b_{3}(t)=t^{2}+3$;
(iv) $b_{4}(t)=25 \cos (2 t)$;
(v) $b_{5}(t)=-2 t^{2}+4 e^{-t}-6$. Hint: Notice that $b_{5}(t)=4 b_{1}(t)-2 b_{3}(t)$.

AUDITORUM EXERCISE CLASS 5
EXERCISE 2
(1) $y^{\prime \prime \prime}+y^{\prime \prime}-2 y=\underline{b_{n}(t)}, \quad t \in \mathbb{R}$
(i) $b_{1}(t)=e^{-t}$
$3^{\text {ad }}$ order linear a_{E}
inhom. With constant coefficients
General sol. of (1) is $y(t)=y_{n}(t)+y_{p}(t)$

- Determine y_{n} gen sol of $\left[y^{(\prime \prime}+y^{\prime \prime}-2 y=0\right]\left(1_{n}\right)$.

Characteristic polynomial $P(\lambda)_{i}=\lambda^{3}+\lambda^{2}-2=(\lambda-1)\left(\lambda^{2}+2 \lambda+2\right)=$

$$
P(1)=1+1-2 V \rightarrow \lambda_{1}=1 \text { root }
$$

$$
=(\lambda-1)(\lambda-1+i)(\lambda-1-i)
$$

$\cdot \lambda_{3}=-1-i(=\sqrt{2})$, ($c_{3}=1$ root $\Rightarrow e^{\lambda_{3} t} \sim e^{(-1-i) t}$ sol. of $\left(1_{n}\right)$
A complex fund system of ($1 n$): $M_{4}=\left\{e^{t}, e^{(-1+1) t}, e^{(-1-i) t}\right\}<\frac{3}{\text { indinearlely }}$ inderentert indeperidert st.
A real fund. system of (th): $M_{R}=\left\{e^{t}, e^{-t} \cos (t), e^{-t} \sin (t)\right\}$

$$
\begin{aligned}
& R\left(e^{\lambda 2 t}\right)=e^{-t} \cdot \cos (t) \\
& J\left(e^{\lambda 2 t}\right)=e^{-t} \sin (t)
\end{aligned}
$$

$y_{n}(t)=c_{1} \cdot e^{t}+c_{2} \cdot e^{-t} \cos (t)+c_{3} e^{-t} \sin (t), \quad c_{i} \in \mathbb{R} \leftarrow$ general solution of the corresponding homogeneous ODE

- Determine a particular sol. y_{p} of (1)
$b_{1}(t)=e^{-t} \sim e^{-1 \cdot t} \quad \lambda=-1 \rightarrow$ NOT a root of $p!$
$b_{1}=\{$ pol. of deg. 0$\} \cdot e^{-t} \Rightarrow y_{p}=\{$ pol of deg.0 0$\} e^{-t}=c \cdot e^{-t}$, we need t fo find c :
Differentiate y_{p} : $\quad y_{p}^{\prime}=-c e^{-t}, y_{p}{ }^{\prime \prime}=c e^{-t}, y_{p}^{\prime \prime \prime}=-c e^{-t}$
Impose:

$$
\begin{aligned}
& {\left[y_{p}^{\prime \prime \prime}+y_{p}^{\prime \prime}-2 y_{p}=e^{-t}\right]} \\
& (-k+t-2) e^{-t}=e^{-t} \\
& -2 c=1 \Rightarrow c=-\frac{1}{2} \leadsto y_{p}(t)=-\frac{e^{-t}}{2}
\end{aligned}
$$

- Gen. sol. of (1) is $y(t)=y_{n}+y_{p}=c_{1} e^{t}+c_{2} e^{-t} \cos (t)+c_{3} e^{-t} \sin (t)-\frac{e^{-t}}{2}$
$(i i) b_{2}(t)=2 t \cdot e^{t} \sim$ find y_{p}
$b_{2}=\{$ pol of $\operatorname{deg} \cdot 1\} \cdot e^{t}, \quad e^{\lambda t}$ with $\lambda=1 \sim \operatorname{Root~of~} P \Rightarrow$ with mull. 1

$$
\hat{a}_{a, b} \text { to }^{2} \text { be }
$$

detaramied such that y_{p}

Set: $4_{p}^{\prime \prime \prime}+4 p^{\prime \prime}-2 y p=2 t e^{t} \Leftrightarrow\left(6 a+6 a t+3 b+a t^{2}+2 a+2 b t+4 a t+q\left(t^{2}+b t-2 a t^{2}-2 b t\right) t^{\prime \prime}\right.$
$\Leftrightarrow t(6 a+4 a)+(6 a+3 b+2 a+2 b)=2 t, \quad \forall t \in \mathbb{R}$
$(10 a t+(8 a+5 b)=(2 t+0$ solve by comparison of the cerficients:

$$
\begin{cases}10 a=2 \rightarrow a=1 / 5 \\ 8 a+5 b=0 \rightarrow b=-\frac{8 a}{5}=-\frac{8}{25} & \\ & \\ & \\ & \\ & \\ & \\ & t(t)=y_{p}(t)=\left(\frac{t^{2}}{5}-\frac{8 t}{25}\right) e^{t}+c_{2} e^{-t} \cos (t)+c_{3} e^{-t} \sin (t)+\left(\frac{t^{2}}{5}-\frac{8 t}{25}\right) e^{t},\end{cases}
$$

$C i \in \mathbb{R}$

$$
\begin{aligned}
& \Rightarrow \quad y_{p}(t)=t^{1} \cdot\left\{\text { pol of deg. 1\} } e^{t}=t(a t+b) e^{t}=\left(a t^{2}+b t\right) e^{t}\right. \\
& y_{p}^{\prime}=\left(2 a t+b+a t^{2}+b t\right) e^{t} \\
& y_{p}^{\prime \prime}=\left(2 a+2 a t+b+2 a t+b+a t^{2}+b t\right) e^{t}=\left(2 a+2 b+4 a t+a t^{2}+b t\right) e^{t} \\
& y_{p}^{\prime \prime \prime}=\left(4 a+2 a t+b+2 a+2 b+4 a t+a t^{2}+b t\right) e^{t}=\left(6 a+6 a t+3 b+a t^{2}+b t\right) e^{t}
\end{aligned}
$$

